8 (812) 320-06-69

Каталог

Категории
Высшее образование (16+) (44671)
Высшее образование
Естественные науки (2770)
Естественные науки
Общественные науки (3854)
Общественные науки
Информатика и компьютерные технологии (4975)
Информатика и компьютерные технологии
Инженерное дело (1487)
Инженерное дело
Телекоммуникации, электроника, электротехника и радиотехника (1412)
Телекоммуникации, электроника, электротехника и радиотехника
Строительство. Архитектура (819)
Строительство. Архитектура
Строительство. Архитектура. Журналы (17)
Строительство. Архитектура. Журналы
Бетон и железобетон (3)
Бетон и железобетон
Жилищное строительство (7)
Жилищное строительство
Строительные материалы (7)
Строительные материалы
Юридические науки.Право (4557)
Юридические науки.Право
Отрасли права (2870)
Отрасли права
Гуманитарные науки (6444)
Гуманитарные науки
Иностранные языки (2420)
Иностранные языки
Экономика. Экономические науки (7774)
Экономика. Экономические науки
Образование. Педагогические науки (4112)
Образование. Педагогические науки
Медицина и здравоохранение (993)
Медицина и здравоохранение
Физическая культура и спорт (510)
Физическая культура и спорт
Среднее профессиональное образование (14+) (3312)
Среднее профессиональное образование
Коллекции (48316)
Коллекции
Издательские коллекции (47897)
Издательские коллекции
Журналы (1146)
Журналы
Остаться в выбранном разделе
Назад к каталогу

Обучение с подкреплением для реальных задач: Пер. с англ.

Обучение с подкреплением для реальных задач: Пер. с англ. ISBN 978-5-9775-6885-2
ISBN 978-5-9775-6885-2
Авторы: 
Уиндер Ф.
Тип издания: 
Дополнительная литература
Издательство: 
Санкт-Петербург: БХВ-Петербург
Год: 
2022
Количество страниц: 
400
Аннотация

Книга посвящена промышленно-ориентированному применению обучения с подкреплением (Reinforcement Learning, RL). Объяснено, как обучать промышленные и научные системы решению любых пошаговых задач методом проб и ошибок — без подготовки узкоспециализированных учебных множеств данных и без риска переобучить или переусложнить алгоритм. Рассмотрены марковские процессы принятия решений, глубокие Q-сети, градиенты политик и их вычисление, методы устранения энтропии и многое другое. Данная книга — первая на русском языке, где теоретический базис RL и алгоритмы даны в прикладном, отраслевом ключе.

Библиографическое описание Скопировать библиографическое описание

Уиндер Ф. Обучение с подкреплением для реальных задач: Пер. с англ. / Ф. Уиндер. - Санкт-Петербург : БХВ-Петербург, 2022. - 400 с. - ISBN 978-5-9775-6885-2. - URL: https://www.ibooks.ru/bookshelf/386481/reading (дата обращения: 18.07.2025). - Текст: электронный.